In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds.

نویسندگان

  • J J Blaker
  • J E Gough
  • V Maquet
  • I Notingher
  • A R Boccaccini
چکیده

Highly porous poly(DL-lactic acid) (PDLLA) foams and Bioglass-filled PDLLA composite foams were characterized and evaluated in vitro as bone tissue engineering scaffolds. The hypothesis was that the combination of PDLLA with Bioglass in a porous structure would result in a bioresorbable and bioactive composite, capable of supporting osteoblast adhesion, spreading and viability. Composite and unfilled foams were incubated in simulated body fluid (SBF) at 37 degrees C to study the in vitro degradation of the polymer and to detect hydroxyapatite (HA) formation, which is a measure of the materials' in vitro bioactivity. HA was detected on all the composite samples after incubation in SBF for just 3 days. After 28 days immersion the foams filled with 40 wt % Bioglass developed a continuous layer of HA. The formation of HA for the 5 wt % Bioglass-filled foams was localized to the Bioglass particles. Cell culture studies using a commercially available (ECACC) human osteosarcoma cell line (MG-63) were conducted to assess the biocompatibility of the foams and cell attachment to the porous substrates. The osteoblast cell infiltration study showed that the cells were able to migrate through the porous network and colonize the deeper regions within the foam, indicating that the composition of the foams and the pore structures are able to support osteoblast attachment, spreading, and viability. Rapid formation of HA on the composites and the attachment of MG-63 cells within the porous network of the composite foams confirms the high in vitro bioactivity and biocompatibility of these materials and their potential to be used as scaffolds in bone tissue engineering and repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications.

Bioactive and bioresorbable composite materials were fabricated using macroporous poly(DL-lactide) (PDLLA) foams coated with and impregnated by bioactive glass (Bioglass) particles. Stable and homogeneous Bioglass coatings on the surface of PDLLA foams as well as infiltration of Bioglass particles throughout the porous network were achieved using a slurry-dipping technique in conjunction with p...

متن کامل

Porous poly ( α - hydroxyacid ) / bioglass ® composite scaffolds for bone tissue engineering . I : preparation and in vitro characterization

Highly porous composites scaffolds of poly-D,L-lactide (PDLLA) and poly(lactide-co-glycolide) (PLGA) containing different amounts (10, 25 and 50wt%) of bioactive glass (45S5 bioglass) were prepared by thermally induced solid-liquid phase separation (TIPS) and subsequent solvent sublimation. The addition of increasing amounts of bioglass into the polymer foams decreased the pore volume. Converse...

متن کامل

Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering.

This study developed highly porous degradable composites as potential scaffolds for bone tissue engineering. These scaffolds consisted of poly-D,L-lactic acid filled with 2 and 15 vol.% of 45S5 Bioglass particles and were produced via thermally induced solid-liquid phase separation and subsequent solvent sublimation. The scaffolds had a bimodal and anisotropic pore structure, with tubular macro...

متن کامل

Cytotoxicity and Genotoxicity Evaluation of Fluorapatite/bioactive Glass Nanocomposite Foams With Two Various Weight Ratios as Bone Tissue Scaffold: an in vitro study

The optimization of biomaterials’ biodegradation rate similar to tissue regeneration, is one of the main goals of tissue engineering. However, the necessity to assess their possible toxicity is always considered. The aim of this study was cytotoxicity and genotoxicity evaluation of fluorapatite/bioactive glass (FA/BG) nanocomposite foams with two various weight ratios to determine the optimal c...

متن کامل

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 2003